RECHARGE

FOR LOW-IMPACT AQUIFER MANAGEMENT

Symposium

Groundwater Infiltration and Injection Planning for the Next 40 Years W. Peter Balleau

July 23, 2004

Q. <u>RECHARGE</u> – What is it?

A. "The addition of water to the saturated zone, naturally...or artificially."

- Glossary of Hydrology AGI (1998)

- ≠ soil moisture
- *≠* well recovery
- \neq flow between formations

Q. <u>STORED WATER</u> – What is it in New Mexico USR Regulations?

A. "The water that has been stored underground for the purpose of recovery."

Major Streams and Aquifers

Natural Recharge	500,000 AFY baseflow of Major Streams	
Major Aquifer Area	38,266,000 acres (50% of State area)	
Average Rate	0.16 inch/year	
Natural Storage	Aquifer area x 10% x 40 year Guideline allowance of 100 feet	dewatering
	382 million AF	
USR Permits	Add to natural condition using existing water rights as benefit to a public managed-water operation	

LOW-IMPACT AQUIFER MANAGEMENT OBJECTIVES

- A managed level of acceptable impacts where the sources of water that support development are two components: aquifer operations and surface water.
- Natural recharge persists in sustaining the natural discharge.
- The project relies on surface water to sustain consumptive uses, and on return flow to balance aquifer storage.
- Surface water is used efficiently, and the aquifer impact is small.
- Not necessarily a USR operation.

LOW-IMPACT AQUIFER MANAGEMENT

LOW-IMPACT AQUIFER MANAGEMENT BENEFITS

- The aquifer is put to use for peaking capacity, superior quality, economy of pumping lift and conveyance distance.
- •Aquifer volume, water levels and flow-through are preserved.
- Aquifer water is not exported from the basin.
- Imported surface water is fully consumed for project purposes.
- Surface-water flow at interrelated streams is protected.
- •Administrative issues of aquifer drawdown and stream depletion are minimized.
- Environmental requirements for recharge are satisfied by advanced-treated effluent.
- •Water Quality Standards for streams are maintained.

LOW-IMPACT AQUIFER MANAGEMENT ISSUES

- •Return-flow accounting is required.
- •The dissolved salt load of the imported water is routed to the aquifer, then to baseflow.

Ancha Formation Infiltration Rate 4.3 ft/day

LOW-IMPACT AQUIFER MANAGEMENT OPPORTUNITIES

- •San Juan Chama Project water: 55,000 AFY to Rio Grande must be 100% consumed.
- Utility of San Juan Chama Project water can be amplified by CU ratio.

55,000 AFY/0.5

= 110,000 AF use with 55,000
San Juan Chama Project
consumed and 55,000
groundwater returned.

•Municipal/Industrial Surface Water Consumptive Use Rights: Instead of Waste Water Treatment Facility returning aquifer storage to river, inject to maintain aquifer storage.

LOW-IMPACT AQUIFER MANAGEMENT CONCLUSIONS

- I. M & I projects require more water for the process than is consumed.
- 2. Surface water (direct or imported) is a renewable source that can be dedicated to consumptive use.
- 3. Groundwater is an operable-storage source that can be utilized to carry non-consumptive process uses, then be returned to the aquifer to continue flowing to natural discharge points while maintaining baseflow and springs.