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ABSTRACT 
 
The U.S. Geological Survey modular groundwater flow model (MODFLOW) by McDonald and Harbaugh 
is regarded as an implementation of a finite-difference numerical scheme applied to the governing 
groundwater flow equation.  However, a comparison of MODFLOW’s discretized form of the flow equation 
with that derived by an integrated finite-difference (IFD) technique reveals that MODFLOW implements an 
IFD numerical scheme within the confines of a finite-difference grid.  An IFD numerical scheme inherent in 
MODFLOW enables minor modifications to be made to the method in which the model reads and 
prepares data to enable the construction of a grid with a more complicated geometry than that of a finite 
difference grid.  Adapting MODFLOW in this fashion enables simulation of flow through a curvilinear grid 
constructed with trapezoidal shaped cells as well as rectangular finite difference grid cells.  The 
modifications give MODFLOW the capacity to exploit the potential of its numerical scheme by adding 
versatility to the spatial discretization of the flow domain without compromising its modeling capability or 
introducing new solvers.  The theory involved in illustrating MODFLOW’s non-generalized IFD numerical 
scheme is outlined and a test problem is presented that verifies the method with an adapted version of 
MODFLOW. 
 

INTRODUCTION 
 
MODFLOW (McDonald and Harbaugh, 1988) is one of the most widely used groundwater flow models in 
the fields of consulting and research.  The authors of MODFLOW designed it so that new capabilities 
could be added to the model structure.  The Generalized Finite-Difference Package (Harbaugh, 1992) 
presents a method that removes some of the assumptions that are inherent in finite-difference grid 
construction.  The discussion herein explains why removing these assumptions is possible and extends 
the generalization.    
 
This paper illustrates that MODFLOW’s numerical scheme is a non-generalized integrated finite-
difference (IFD) method rather than a finite-difference method.  This is demonstrated by outlining the 
discretization process involved when an integrated finite-difference method is used.  The equation that 
results from the IFD discretization process is then compared with the equation solved by MODFLOW and 
found to be identical.  A non-generalized IFD method is explained.  Minor modifications to MODFLOW’s 
source code are illustrated to enable flow simulations through a curvilinear grid.  Finally, a test problem is 
presented that verifies the method with an adapted version of MODFLOW. 
 

IFD NUMERICAL FORMULATION 
 
The IFD numerical formulation, herein, follows that of Narasimhan (Narasimhan, 1976).  Consider the 
governing partial differential equation for groundwater flow 
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Spatially integrating (1) over a small finite subregion V of the flow region gives 
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Now the divergence theorem is applied to the integral of the net outflux due to the head gradient in 
Equation 2.  The divergence theorem states 
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Applying Equation 3 to the first term in Equation 2 yields 
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Equation 4 is the integral formulation of Equation 1, which can be discretized to obtain an IFD numerical 
approximation.  Consider how Equation 4 can be discretized.  Figure 1 shows a two-dimensional, five-
sided cell in a generalized IFD grid.  Assuming the cell in Figure 1 has a unit depth into the page and 

expressing the scalar projection of h  in the n direction as nhnh  / , then the two-dimensional 

discretized form of Equation 4 for node m = 6 is written as 
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  where 
   Kmn = hydraulic conductivity between nodes m and n [LT 

-1
], 

   Amn = area through which flow occurs [L
2
], 

   Lmn = distance between nodes m and n [L], 
   qm  = source or sink external to aquifer at node m [T 

-1
], 

   Vm  = volume of cell enclosing node m [L
3
], 

   Ssm = specific storage of cell enclosing node m [L
3
], 

   
k

mh   = head at node m at time step k [L], 

   t   = time step chosen for iterative procedure [T]. 

 
Node m = 6 has five sides resulting in a surface integral discretized into 
a sum with five terms.  Likewise, for the general case, Equation 5 would 
be written for every cell (node) in the grid and the number of terms in 
each sum would correspond to the number of sides on the associated 
cell.  This makes it possible to simulate flow through cells with varying 
numbers of sides in two dimensions.  If conductance is expressed as 
the product of hydraulic conductivity and the area through which flow 
occurs divided by the length of flow, then it can be described as C = 
KA/L and Equation 5 can be written as 
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where c = number of cell faces around node m.  Conductance can also be described in terms of 
transmissivity.  In this case, C = Tw/L where w is the width of the cell perpendicular to the direction of 
flow.   
 
A notable feature of Equation 6 must be made clear.  Since the divergence theorem converted the 
volume integral of the net outflux due to a head gradient in Equation 2 to a surface integral of the scalar 
projection of the head gradient normal to a surface enclosing a small finite subregion of the flow domain, 
a constraint was inherited that affects IFD grid construction.  Ideally, the interfaces between elements 
should be perpendicular to the line joining any two nodal points and should intersect that line at its 
midpoint; although this ideal situation may be difficult to achieve in practice, it should be approximated as 
closely as possible (Narasimhan, 1976).  This limitation is discussed below.  
 

MODFLOW’s DISCRETIZATION PROCESS 
 
Rather than deriving a finite-difference analog to Equation 1, the authors of MODFLOW present an 
alternative approach simplifying the mathematics and explaining the computational procedure in terms of 
familiar physical concepts regarding the flow system (McDonald and Harbaugh, 1988).  Essentially, the 

Figure 1. Five-sided cell in 

 a generalized IFD grid 
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discretization process followed in MODFLOW is to discretize Darcy’s law for flow through the six faces of 
a three-dimensional, block-centered cell.  Then, for the same cell, a source/sink term which accounts for 
external flow rates is derived.  Finally, the continuity equation that states the sum of all flows into and out 
of the cell must be equal to the rate of change in storage within the cell is applied.  Using the same 
subscript notation as Equation 5, the resulting equation is expressed as  
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For details on the actual discretization process, the reader is referred to the MODFLOW manual 
(McDonald and Harbaugh, 1988).  The second and third terms in Equation 7 are the sum of a head 
dependent and a non-head dependent source or sink term external to the aquifer that can be expressed 
as 

     m
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mmmm QhPVq  ,     (8) 

   where 
    qm = source or sink external to aquifer at node m [T 

-1
], 

    Vm = volume of cell enclosing node m [L
3
]. 

 
Combining Equation 8 with 7 produces Equation 6, hence, the discretized equation solved by MODFLOW 
implements an IFD numerical scheme.  However, MODFLOW implements the scheme within cells that 
are limited to four sides in two dimensions which creates a non-generalized scheme.   
 
It is apparent that MODFLOW utilizes an integrated finite-difference numerical scheme in that the 
discretized equation that MODFLOW solves is identical to the equation we arrive at when implementing 
the IFD discretization process.  MODFLOW implements this scheme, however, through a flow domain 
represented with a finite-difference grid.  Figure 1 illustrates the capacity of an IFD method to simulate 
flow through cells with shapes more complicated than rectangles.  Hence, in its present form, MODFLOW 
has the potential to simulate flow through a domain comprised of shapes other than rectangles. 
 

ENABLING MODFLOW TO UTILIZE ITS IFD METHOD 
 
MODFLOW was designed to simulate flow through a finite-difference grid with intrinsically rectangular 
cells.  The process of deriving a numerical solution is constrained by the shape of the grid cells in two 
areas: the calculation of area for each cell and the calculation of conductance between cells.  Both of 
these calculations assume cell widths are constant along any row or column.  MODFLOW’s solvers are 
also equipped to solve for the head in a cell with only four sides in two dimensions.  However, minor 
modifications to the source code of MODFLOW enable the cell areas and conductances between cells to 

be calculated within cells that form trapezoids in two 
dimensions.  This enables MODFLOW to simulate flow 
through a curvilinear grid, since approximating the 
curvilinearity with straight-line segments results in a grid 
composed of trapezoidal cells as shown in Figure 2.  Altering 
the grid in this fashion gives the code the capacity to exploit 
the benefits inherent in its numerical scheme.  How 
MODFLOW’s code would have to be adjusted to calculate the 
area of each cell and the conductance between cells is given 
below. 

 
With geographical information systems (GIS), obtaining the area for each cell within a grid is a routine 
process.  A GIS can create or import a model grid, calculate the area of each cell, and return the cell 
areas in the form of a two-dimensional array that MODFLOW can be adapted to read.  In this case, the 
area would be used in the calculation of storage capacity, vertical conductance, volumetric recharge and 
evapotranspiration rates within the model.   
 
Modification of the conductance calculation entails using MODFLOW’s existing equation in its unreduced 
form.  Presently, MODFLOW calculates equivalent conductance between two cells as 

Figure 2. Example of curvilinear grid 
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  where 
    Cij = equivalent conductance between cells i and j [L

2
T 

-1
], 

     Ti = transmissivity of cell i [L
2
T 

-1
], 

     Li = length of flow within cell i [L], 
     w = width of cell normal to direction of flow in cell i or j [L]. 
 
However, Equation 9 was reduced by the assumption that the width of cells i and j is equal.  If the widths 
were not equal, Equation 9 would take the form 
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Replacing Equation 9 with 10 is necessary to enable MODFLOW to calculate flow through a curvilinear 
grid.  Finally, a method for calculating Li and wi must be developed.  The simplest method is to adapt the 
model to read the x and y locations of grid vertices.  The average length of flow within any cell in the row 
and column directions can then be calculated.  Upon completion of these modifications, MODFLOW 
becomes capable of simulating flow through a curvilinear grid. 
 
The interfaces between elements should be perpendicular to the line joining any two nodal points and 
should intersect that line at its midpoint.  This ideal situation can only be achieved if actual curved lines 

were to be used in the grid 
constructed for simulating flow.  If 
Equation 10 is used to calculate the 
equivalent conductance between 
nodes, then the way the ideal length 
is approximated is shown in Figure 
3.  It is also evident from Figure 3 
that the sum of half the average 
length of flow in cell i,j and half the 
average length of flow in cell i,j+1 is 
an approximation of the actual 
curved length that improves as the 
spatial discretization is refined.  
Spatial discretization of a curve 
always implies such an 
approximation.  
 

Source code containing the modifications described above is available free of charge from the author at 
www.balleau.com. 
 

VERIFICATION OF MODEL MODIFICATIONS 
 
A test problem is presented to check the validity of the model obtained from the aforementioned code 
modifications.  A grid with radial symmetry is readily constructed with trapezoidal shaped cells.  Figure 4 
shows a plan view of the model grid for the problem.  The problem is specified homogeneous and 
isotropic with a gradient of 0.667 over a radius of 15 feet.  An analytical solution to the steady-state radial 
flow problem exists and is given as (Crank, 1967) 
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Figure 3. Approximated length of flow between cells 
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   where 
    h1 = head at radius r1, 
    h2 = head at radius r2. 
 
Figure 5 illustrates a plot of dimensionless head vs. dimensionless radius solved over the flow domain 
and compares the result with the analytical solution. 

 
SUMMARY 

 
MODFLOW is a widely used groundwater flow model that implements a non-generalized IFD numerical 
scheme within the confines of a finite-difference grid.  One of the benefits associated with an IFD scheme 
is its ability to simulate flow through a grid with geometry more complicated than that of a finite-difference 
grid.  Minor modifications can be made to MODFLOW’s source code to enable flow simulations through a 
curvilinear grid constructed with trapezoidal shaped cells.  The modifications maintain compatibility with 
MODFLOW’s standard packages and increase the versatility of grid construction.  
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